USN

Seventh Semester B.E. Degree Examination, June / July 2013 Power Electronics

Time: 3 hrs. Max. Marks:100

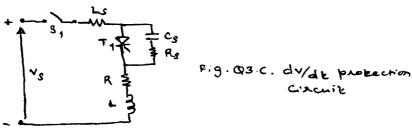
Note: 1. Answer any FIVE full questions, selecting atleast TWO question from each part.

2. Draw neat diagram and Waveforms, wherever possible.

PART - A

- a. What is Power Electronics? Draw a neat block diagram of generalized power converter system. State the applications of power electronics. (06 Marks)
 - b. With neat circuit diagram and waveforms, explain the types of power electronic circuits.

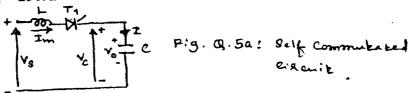
(12 Marks)


c. Compare General – purpose, Fast recovery and Schokky diodes.

(02 Marks)

- a. The maximum junction temperature of a transistor is $T_J = 150^{\circ} C$ and the ambient temperature is $T_A = 25^{\circ} C$, If the thermal impedances are $R_{JC} = 0.4^{\circ} C/W$, $R_{es} = 0.1^{\circ} C/W$, and $R_{SA} = 0.5^{\circ} C/W$. Calculate i) the maximum power dissipation and ii) the case temperature. (04 Marks)
 - b. With the help of parasitic model and switching model, explain the switching waveforms of n-type (enhancement) MOSFET. (10 Marks)
 - c. Write a note on isolation of gate and base drives.

(06 Marks)


- 3 a. Using a two transister model of thyristor, show that $I_A = \frac{\alpha I_G + I_{CBO1} + I_{CBO2}}{1 (\alpha_1 + \alpha_2)}$. (06 Marks)
 - b. With neat sketch, explain turn on characteristics of SCR. (06 Marks)
 - c. The input voltage Fig. Q3(c) is $V_s = 200V$ with load resistance of $R = 5\Omega$. The load and stray inductances are negligible and the thyristor is operated at a frequency of $f_s = 2KHz$. If the required dv/dt is $100 \text{ V/}\mu\text{S}$ and the discharge current is limited to 100A. Determine i) the values of R_s and C_s ii) the snubber loss, and iii) the power rating of the snubber resistor. (08 Marks)

- 4 a. Discuss the effect of inductance using the 1ϕ full converter. (08 Marks)
 - b. What is phase control? Explain the principal of phase control using 1 φ half wave controlled rectifier.
 (08 Marks)
 - c. Compare circulating and non circulating mode of operation of dual converter. (04 Marks)

PART - B

a. A thyristor circuit is shown in fig. Q5(a), if thyristor T_1 is switched on at t=0, determine the conduction time of thyristor T_1 and the capacitor voltage after T_1 is turned off. The circuit parameters are $L=10\mu H$, $C=50\mu F$ and $V_s=200V$. The inductor carries an initial current of $I_m=250A$.

- b. What is the principle of complementary commutation? Explain the same with the help of suitable circuit and waveforms. (10 Marks)
- 6 a. What is the principle of on off control? Explain the same with a single phase full wave controller.
 - b. Draw a neat sketch of 1 φ AC voltage controller with RL load and explain its working.
 (06 Marks)
 - c. A single phase full wave AC voltage controller has a resistive load of $R = 10 \Omega$ and the input voltage is $V_s = 120V$ (rms), 60Hz. The delay angles of thyristors T_1 and T_2 are equal $\alpha_1 = \alpha_2 = \pi/2$. Determine i) the rms output voltage V_o ii) the input power factor PF iii) the average current of thyristor I_A and iv) the rms current of thyristor I_R . (08 Marks)
- a. With a neat circuit diagram, explain the operation of a step down chopper and also explain constant frequency and variable frequency operation. Derive an expression for output voltage incase of step down chopper.

 (10 Marks)
 - b. A step up chopper with a pulse width of 200μs operating on 200V, dc supply. Calcualte the output voltage, if the blocking period of the device is 50μs. (02 Marks)
 - c. With a neat circuit diagram and quadrant operation, explain class E chopper. (08 Marks)
- 8 a. With a neat circuit diagram, of 1 φ half bridge inverter, explain the principle of operation of an inverter.

 (08 Marks)
 - b. Write brief note on current source inverter. (06 Marks)
 - c. With the help of circuit diagram and waveforms, explain a variable DC link inverter.

(06 Marks)
